BBC-003-1104009 Seat No. ## M. Sc. (Sem. IV) Examination June-July - 2021 ## **Inorganic Chemistry** C(I)-403 : Bonding in Complexes Faculty Code: 003 Subject Code: 1104009 Time : $2\frac{1}{2}$ Hours] [Total Marks : 70 Instructions : (1) Answer any five questions. (2) All Questions carry equal Marks. 1 Answer the following. 14 - (a) Calculate the spectral term for the Cr⁺⁺ and Cr⁺⁺⁺ ions. - (b) Calculate the magnetic moment of Ni⁺² complexes. - (c) Define J-J coupling - (d) What is spin multiplicity - (e) Determine S, M_L, L. M_L and J in d³ configuration - (f) Give the use of Tanabe-Sugano diagram - (g) How Racah Parameters can be evaluated? - 2 Answer the following. - (a) Define L-S coupling. - (b) What is hole formalism? - (c) Name the Racah Parameters with symbols. - (d) Determine ground spectral term in d⁶ configuration (e) Find out the spectral term for the Fe⁺⁺ and Fe⁺⁺⁺ ions. - (e) Find out the spectral term for the Fe⁺⁺ and Fe⁺⁺⁺ ions (f) Calculate the magnetic moments of Co⁺² and Co⁺³ - (g) Define S-S coupling - **3** Answer the following. (a) Find out the ground state terms for d², d⁹ configurations & calculate total multiplicity for each. (b) What are Step-up and Step-down operators? Derive L < 3, -2 >, from L < 3, -1 > 14 14 | 4 | Answer the following. | | | |----|--------------------------|---|----| | | (a) | Construct the correlation diagram for d ² in Oh weak fie and strong Field. | ld | | | (b) | Explain vibrionic coupling, laporte's forbidden transitio spin multiplicity | n, | | 5 | | 8 | 14 | | | (a) | Show that $< m/x^4+y^4+z^4/m'> = 5/7 r^4$, when $m = m' \pm 0$ | | | | (b) | Discuss the Electronic spectra of d ¹ and d ⁹ | | | 6 | Answer the following. 14 | | | | | (a) | Explain the Tanabe-Sugano diagram for d ⁴ & d ⁵ configurations | | | | (b) | Show that $P_I \cos \theta = 1/2$ ($5\cos^3\theta$ -3 $\cos\theta$), where I = 3 | | | 7 | Answer the following. 14 | | | | | (a) | Calculate energy of the integral $< \phi 2\phi 1 \mid \text{Voct} \mid \phi 2\phi 1$
where $< \phi 1 \mid \text{Voct} \mid \phi 1 > = -4\text{Dq}$ and $< \phi 2 \mid \text{Voct} \mid \phi 2\phi 1$
= Dq | | | | (b) | Discuss Jahn-Teller effect with suitable example. | | | 8 | Answer the following. | | | | | (a)
(b) | Explain charge transfer spectra with suitable example. Discuss the spectrum of $[Cr(H_20)_6]^{+3}$ in detail. Show that how β , B and 10Dq can be determined from the spectra. | | | 9 | Answer the following. 14 | | | | | (a) | Derive the formula Voct = $6Ze^2/a+(X^4+Y^4+Z^4-3/5r^4)$ in Oh field | | | | (b) | Explain d- orbital splitting in Tetrahedral field. | | | 10 | Answer the following. 14 | | | | | (a) | Explain Orgel diagram for d ² and d ⁸ | | | | (b) | Show that $P_1 \cos \theta = 1/2(5\cos^2\theta - 1)$, where $I = 2$ | |